Airbus Bartolomeo Platform

General Overview

Airbus Bartolomeo Platform

- External Platform on the International Space Station (ISS)
- Attached to Columbus Module
- Wide Range of Mission Opportunities
- Payload alignment in various directions (Ram, Zenith, Nadir)
- Provides highest data downlink rate on ISS
- Expected launch on SpX-20 (March 2020)
- Installation completed in April 2020

Airbus Bartolomeo: Robust Capabilities

- Capability to take advantage of all 3 major LEO phenomena:
 - Extreme Conditions of Space
 - Vantage Point Remote Sensing and Satellite Deployment
 - Microgravity
- Ability to service ISS NL major markets and OGA Programs
 - Technology Development and TRL
 - Advanced Materials
 - Remote Sensing
 - NSF Transport Solicitation

Use Cases- Advanced Materials & Manufacturing

Use Case	Platform Capabilities & Benefits
Materials Testing	 With unobstructed Zenith-oriented view Bartolomeo gives the opportunity to expose material samples to space and solar radiation With unobstructed Ram-facing view the effects of atomic oxygen can be studied on samples Additional exposure to elements such as thermal cycling, vacuum, and space debris are present in all directions
In-Space Manufacturing	 Via Bartolomeo and its large / extendable payload envelopes on orbit in-space manufacturing can be performed to produce structures with fewer defects via 3D printing or other appropriate methods

Use Cases- Remote Sensing & Monitoring

Use Case	Platform Capabilities & Benefits
Remote Sensing	 The unobscured view of Earth from Bartolomeo in approximately 400 km orbit altitude enables high quality imaging with cost-efficient instrumentation Types of sensing can include (IR, Visible, UV, RF, etc.)
Astrophysics & Heliophysics	 Bartolomeo offers among the best view towards the Zenith direction from the ISS
Atmospheric Research	 All forward-facing payloads have unobstructed view to the space / atmosphere boundary Broadband data downlink capabilities of Bartolomeo allows for a high data production rate
Space Weather	 The unobstructed Zenith-oriented view allows cost-efficient space observation, e. g. for solar activity monitoring

Use Cases- Technology Development & Testing

Use Case	Platform Capabilities & Benefits
On-Orbit Assembly for Exploration	 Bartolomeo can provide an opportunity to assemble space system components on-orbit and deploy them with appropriate systems Short-term realization of a long-term vision to provide larger space systems unrestricted by the launcher payload fairing for exploration
Robotics Testing	 Bartolomeo can provide an opportunity to perform robotic operations in a protected testing environment
In-orbit Testing	 With power, data and viewing available Bartolomeo can serve as general in-orbit demonstration test bed If compliant with safety regulations any technology can be tested on ISS as long as it is of civilian purpose
Propulsion Testing	 With available power of up to 800 W per payload Bartolomeo can serve as testbed for new electric space propulsion systems
Spacecraft Deployment	 One of the Bartolomeo payload sites can be converted to a small satellite deployment system If deployed directly from Bartolomeo satellites can have more mass than deployable by existing systems on the ISS

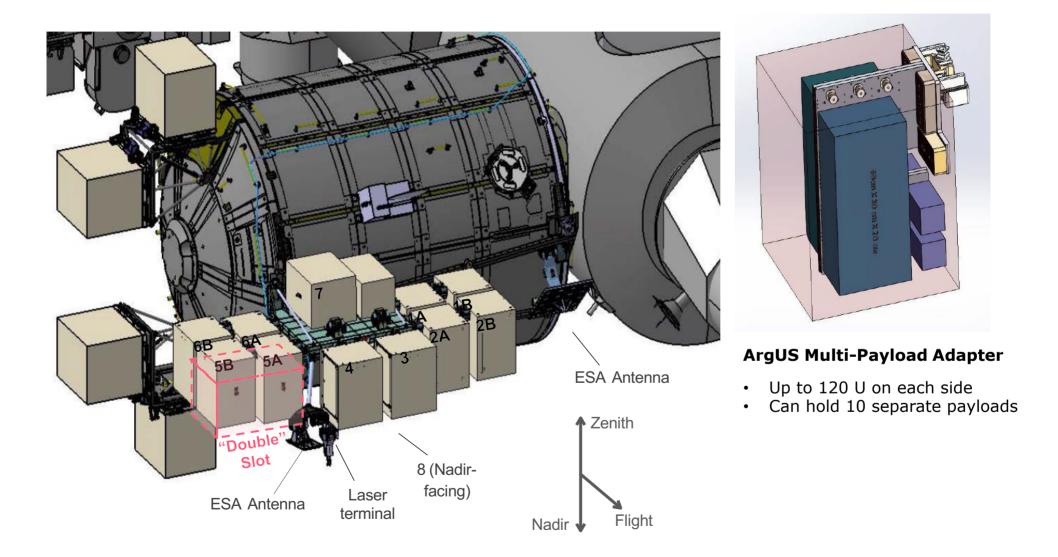
NSF/CASIS Transport Phenomena Solicitation Focus Areas for Bartolomeo

Main Solicitation Focus Area	Specific Focus Area	Types of Investigations for Bartolomeo Platform
Thermal Transport	Radiation	 Payloads on the Bartolomeo platform can be exposed to the external environment of space which contains high levels of radiation Platform slots can face three different directions (ram, zenith, nadir) where each provide a different level of radiation exposure on a payload
Thermal Transport & Fluid Dynamics	Phase Transitions	 Studies that can utilize both the microgravity and the rapid temperature cycling of the external space environment
Thermal Transport & Fluid Dynamics	High Resolution Modeling	 Bartolomeo downlink can deliver larger amounts of data faster than current ISS capabilities, improving the real time modeling capabilities for thermal profiles, single & multiphase flow profiles, etc.
Fluid Dynamics	Cryogenics	 Bartolomeo can support low temperature investigations and is safer to use with more volatile fluids being an external platform
Combustion	Low Temperature Chemistry	 Lower temperature combustion chemistry can be supported on the platform and is safer to conduct externally

Bartolomeo Services

Included:

- Payload Mission Manager for guidance through agency acceptance and safety reviews
- Final payload tests, integration and installation on the launcher
- Launch (USA and ESA countries)
- Installation on Bartolomeo Platform
- Payload-Bartolomeo interface
- Operation interface via the Airbus Cloud Console
- Data Delivery
- End of Life Disposal

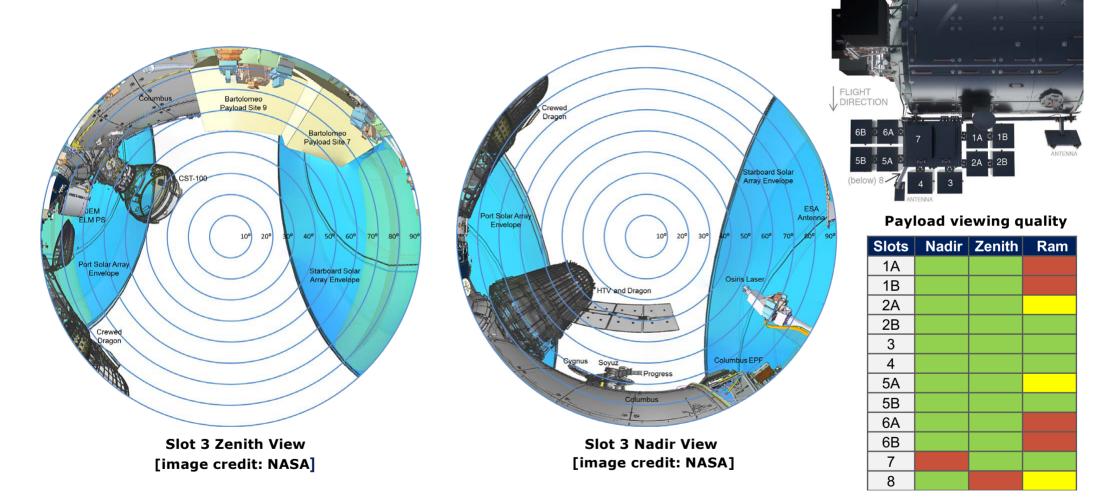

Extra Options:

- Up to 2 TB/day data provision via Bartolomeo's own optical link (laser comm)
- Payload development consultancy
- Payload return to Earth

Bartolomeo Specifications

- 12 total slots on platform:
 - Volume per slot: up to 100 x 80 x 70 cm³ (560 U)
 - Slots may be subdivided for small payloads, or doubled for larger payloads
- Mass per slot: up to 250 kg
- Power per slot:
 - Up to 180 W (standard) supports power requirements of many sensors, telescopes
 - Up to 800 W (specific slots) for furnaces (heaters), manufacturing systems, propulsion tests
- Data rate:
 - Up to 0.1 Mbit/s (via ISS)
 - Up to 2 TB/day (~185 Mbit/s) via Bartolomeo optical link (extra)

Payload Accommodation

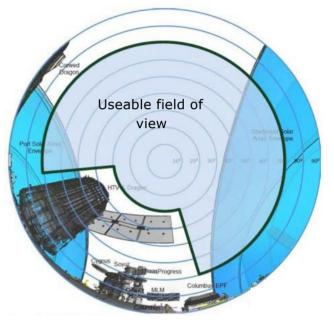


Payload Accommodation

SLC	T POSITION	1A	1B	2A	2B	3	4	5A	5B	6A	6B	7	8
[Option to	combine slots]	_	_	_	,			_	_,	_			
	800 W			x		х	x	x					
Power	400 W	x								х		х	
	180 W		x		x				x		х		
	[Ram]			x	x	х	x	x	x				
Field of	[Nadir]	x	x	x	x	x	x	x	x	x	x		x
View	[Zenith]	x	x	x	x	х	x	x	x	x	х	x	
	[Port/Starboard]		x		x	x	x		x		x	х	x
	Operation of safety-critical ayloads enabled]			x	x	x	x	x		x			

- Some payload slots can be combined into "Double Slots"
- > High power 400–800 W can be provided
- > Unconstrained field of view in Ram, Nadir, Zenith
- Some payload slots allow the operation of safety- critical payloads

Payload Fields of View



Broadband Data Downlink

Optical Ground Segment

- Commercial ground stations distributed worldwide will be used
- Some field of view restrictions exist to visiting vehicles and solar arrays
- Conservative achievable mean data throughput 1.375 TB / day, maximum achievable 2.5 TB / day
- Ground segment can provide around 100 GB within 45 minutes of downlink

OSIRISv3 Field of View

Throughput Analysis Parameters							
OSIRISv3 max. channel rate	10 Gbps						
Buffer size	500 GB						
Number of ground stations	8						
Minimum elevation angle	15 deg						

Mapping of Uses Cases to Platform Positions

Use - > Case	Materials Testing	In-Space Manufact- uring	Remote Sensing	Astro & Helio Physics	Atmo- spheric Research	Space Weather	On-Orbit Assembly	Robotics Testing	In-Orbit Testing	Propulsion Testing	Spacecraft Deploy- ment
Nadir (All except 7)		Х	Х				Х	Х	Х		
Zenith (All except 8)	Х	Х		Х		Х	Х	Х	Х	Х	Х
Ram (2B, 3, 4, 5B, 7)	Х	Х			Х		Х	Х	Х	Х	Х