Publications Resulting from ISS National Lab Sponsored Projects

Below, explore peer-reviewed journal articles related to ISS National Lab investigations. For a more extensive list of spaceflight-related publications (not limited to ISS National Lab sponsorship), see the International Space Station Research Results Citations on the NASA website.

Collective Search by Ants in Microgravity

Countryman S, Stumpe M, Crow S, Adler F, Greene M., Vonshak M, and Gordon D. Collective search by ants in microgravity. Front Ecol Evol. 2015; 3:25.

The problem of collective search is a tradeoff between searching thoroughly and covering as much area as possible. This tradeoff depends on the density of searchers. Solutions to the problem of collective search are currently of much interest in robotics and in the study of distributed algorithms, for example to design ways that without central control robots can use local information to perform search and rescue operations. Ant colonies operate without central control. Because they can perceive only local, mostly chemical and tactile cues, they must search collectively to find resources and to monitor the colony's environment. Examining how ants in diverse environments solve the problem of collective search can elucidate how evolution has led to diverse forms of collective behavior. An experiment on the International Space Station in January 2014 examined how ants (Tetramorium caespitum) perform collective search in microgravity. In the ISS experiment, the ants explored a small arena in which a barrier was lowered to increase the area and thus lower ant density. In microgravity, relative to ground controls, ants explored the area less thoroughly and took more convoluted paths. It appears that the difficulty of holding on to the surface interfered with the ants' ability to search collectively. Ants frequently lost contact with the surface, but showed a remarkable ability to regain contact with the surface.

A Spheroid Toxicity Assay Using Magnetic 3D Bioprinting & Realtime Mobile Device-based Imaging

Tseng H, Gage JA, Shen T, Haisler WL, Neeley SK, Shiao S, Chen J, Liao A, Hebel C, Raphael RM, Becker JL, Souza GR. A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging. Sci Rep. 2015;5:13987.

An ongoing challenge in biomedical research is the search for simple, yet robust assays using 3D cell cultures for toxicity screening. This study addresses that challenge with a novel spheroid assay, wherein spheroids, formed by magnetic 3D bioprinting, contract immediately as cells rearrange and compact the spheroid in relation to viability and cytoskeletal organization. Thus, spheroid size can be used as a simple metric for toxicity. The goal of this study was to validate spheroid contraction as a cytotoxic endpoint using 3T3 fibroblasts in response to 5 toxic compounds (all-trans retinoic acid, dexamethasone, doxorubicin, 5′-fluorouracil, forskolin), sodium dodecyl sulfate (+control), and penicillin-G (−control). Real-time imaging was performed with a mobile device to increase throughput and efficiency. All compounds but penicillin-G significantly slowed contraction in a dose-dependent manner (Z’ = 0.88). Cells in 3D were more resistant to toxicity than cells in 2D, whose toxicity was measured by the MTT assay. Fluorescent staining and gene expression profiling of spheroids confirmed these findings. The results of this study validate spheroid contraction within this assay as an easy, biologically relevant endpoint for high-throughput compound screening in representative 3D environments.

Microscale Generation of Cardiospheres Promotes Robust Enrichment of Cardiomyocytes Derived from Human Pluripotent Stem Cells

Nguyen DC, Hookway TA, Wu Q, Jha R, Preininger MK, Chen X, Easley CA, Spearman P, Deshpande SR, Maher K, Wagner MB, McDevitt TC, Xu C. Microscale generation of cardiospheres promotes robust enrichment of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Reports. 2014;3(2):260-268.

Cardiomyocytes derived from human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, disease modeling, and drug discovery, all of which require enriched cardiomyocytes, ideally ones with mature phenotypes. However, current methods are typically performed in 2D environments that produce immature cardiomyocytes within heterogeneous populations. Here, we generated 3D aggregates of cardiomyocytes (cardiospheres) from 2D differentiation cultures of hPSCs using microscale technology and rotary orbital suspension culture. Nearly 100% of the cardiospheres showed spontaneous contractility and synchronous intracellular calcium transients. Strikingly, from starting heterogeneous populations containing ∼10%–40% cardiomyocytes, the cell population within the generated cardiospheres featured ∼80%–100% cardiomyocytes, corresponding to an enrichment factor of up to 7-fold. Furthermore, cardiomyocytes from cardiospheres exhibited enhanced structural maturation in comparison with those from a parallel 2D culture. Thus, generation of cardiospheres represents a simple and robust method for enrichment of cardiomyocytes in microtissues that have the potential use in regenerative medicine as well as other applications.

Comparative Analysis of GOCI Ocean Color Products

Amin R, Lewis MD, Lawson A, Gould Jr. RW, Martinolich P, Li R-R, Ladner S, Gallegos S. Comparative analysis of GOCI ocean color products. Sensors. 2015;15(10):25703-25715.

The Geostationary Ocean Color Imager (GOCI) is the first geostationary ocean color sensor in orbit that provides bio-optical properties from coastal and open waters around the Korean Peninsula at unprecedented temporal resolution. In this study, we compare the normalized water-leaving radiance (nLw) products generated by the Naval Research Laboratory Automated Processing System (APS) with those produced by the stand-alone software package, the GOCI Data Processing System (GDPS), developed by the Korean Ocean Research & Development Institute (KORDI). Both results are then compared to the nLw measured by the above water radiometer at the Ieodo site. This above-water radiometer is part of the Aerosol Robotic NETwork (AeroNET). The results indicate that the APS and GDPS processed correlates well within the same image slot where the coefficient of determination (r^2) is higher than 0.84 for all the bands from 412 nm to 745 nm. The agreement between APS and the AeroNET data is higher when compared to the GDPS results. The Root-Mean-Squared-Error (RMSE) between AeroNET and APS data ranges from 0.24 [mW/(cm^2srμm)] at 555 nm to 0.52 [mW/(cm^2srμm)] at 412 nm while RMSE between AeroNET and GDPS data ranges from 0.47 [mW/(cm^2srμm)] at 443 nm to 0.69 [mW/(cm6^2srμm)] at 490 nm.