Stanford and UC Berkeley Collaborate on Investigation to Produce Superior Graphene Aerogel in Space
WALLOPS FLIGHT FACILITY (VA), August 24, 2023 – Graphene aerogel is a remarkable lightweight material that is both thermally insulating and electrically conductive. This makes it appealing for use in a wide variety of applications—from improved energy storage in batteries to better oil spill cleanup methods to next-generation space suits. A team of researchers from Stanford University and the University of California, Berkeley are leveraging the International Space Station (ISSInternational Space Station) National Laboratory to produce higher-quality graphene aerogel than is possible on Earth.
This week, the Crew-6 astronauts onboard the space station completed work on the team’s investigation, which was funded by the U.S. National Science Foundation (NSF). Results could provide new insights into the underlying physics of graphene aerogel synthesis and lead to the development of novel material products.
“Through the microgravityThe condition of perceived weightlessness created when an object is in free fall, for example when an object is in orbital motion. Microgravity alters many observable phenomena within the physical and life sciences, allowing scientists to study things in ways not possible on Earth. The International Space Station provides access to a persistent microgravity environment. environment of the space station, we can unlock a completely new area of material science that we’ve never had access to,” said Jessica Frick, a research engineer at Stanford.
Frick is part of Stanford’s Extreme Environment Microsystems Laboratory, or XLab. Conceived by Debbie Senesky, an associate professor in aeronautics and astronautics at Stanford, the XLab focuses on making tiny but tough electronics that can work in extreme environments—like space. For their investigation on the space station, Frick and Senesky are collaborating with a research group from UC Berkeley led by Roya Maboudian, a professor of chemical and biomolecular engineering. The team aims to better understand the nature of graphene aerogel and how microgravity affects its properties.
The investigation, which will execute the first step of graphene aerogel synthesis in microgravity, launched on Northrop Grumman’s 19th Commercial Resupply Services mission(Abbreviation: CRS mission) A CRS mission is a cargo resupply mission contracted by NASA to deliver supplies and research to the International Space Station on commercial spacecraft as part of the CRS contract with three commercial companies. As part of CRS missions, experiments currently return to Earth on SpaceX Dragon spacecraft that splash down in the ocean. (NG-19). Results could have implications for future in-space manufacturing as well as deep space missions.
Producing graphene aerogel is a two-step process. The first step is much like making Jell-O. The research team combined graphene oxide flakes in an aqueous solution, like you would combine gelatin powder and hot water for Jell-O. The graphene oxide solution samples were then sent to the space station. Earlier this week, crew members loaded the samples into a furnace, where the solution will be heated to form graphene hydrogel. This process takes a few hours, and once the hydrogel is formed, the astronauts will prepare the samples for return to Earth.
When the samples are back in the lab, the team will do the second step of the process, which involves removing the liquid and leaving behind only air in the form of graphene aerogel. The team will then examine the properties of the aerogel and compare what they find with terrestrially produced graphene aerogel.
The first step of the process is the most crucial, says Frick. On Earth, gravity can pull the graphene flakes down unevenly, which can create cracks in the hydrogel. This could affect the quality of aerogel produced, making it less electrically conductive or have lower absorption rates.
“What we’re expecting to see from the space-produced graphene hydrogel is a depression in the effects of sedimentation that we see here on Earth,” said Senesky. The graphene aerogel produced from the hydrogel will only be a few millimeters in size, but if the team can show that the aerogel is of higher quality than its terrestrial counterparts, production could be scaled up to create larger graphene aerogels.
According to Senesky, aerogels have many remarkable qualities, making them an ideal material for a multitude of applications. They are extremely porous, which makes them good for filtration. For example, NASANational Aeronautics and Space Administration used a silica-based aerogel in the agency’s Stardust mission to capture fine dust particles from a comet. Silica aerogels have also been used as insulation on NASA’s Mars rovers and in outerwear clothing here on Earth.
Because graphene is also electrically conductive, researchers are hopeful graphene aerogel can be used for energy storage in batteries and supercapacitors. Additionally, graphene aerogel is a promising thermal insulator that could be used in heat shield technology or embedded in fabrics for aerospace applications. It could also be used as a chemical sensor or even to help absorb certain chemical constituents, which could be beneficial for applications like oil spill cleanup.
“Graphene aerogel is absorbent like a sponge,” said Maboudian. “This means it could be used to soak up materials many more times its own weight, which enables it to be used as a tool to clean up chemical spills and detect harmful chemicals in the environment.”
The NG-19 mission launched from Wallops Flight Facility on August 1 at 8:31 p.m. EDT and included more than 20 ISS National Lab-sponsored payloads. To learn more about all ISS National Lab-sponsored research on this mission, please visit our launch page.
Download a high-resolution for this release: NASA astronaut Woody Hoburg
Media Contact:
Patrick O’Neill
904-806-0035
PONeill@ISSNationalLab.org
# # #
About the International Space Station (ISS) National Laboratory: The International Space Station (ISS) is a one-of-a-kind laboratory that enables research and technology development not possible on Earth. As a public service enterprise, the ISS National Lab allows researchers to leverage this multiuser facility to improve life on Earth, mature space-based business models, advance science literacy in the future workforce, and expand a sustainable and scalable market in low Earth orbit(Abbreviation: LEO) The orbit around the Earth that extends up to an altitude of 2,000 km (1,200 miles) from Earth’s surface. The International Space Station’s orbit is in LEO, at an altitude of approximately 250 miles.. Through this orbiting national laboratory, research resources on the ISS are available to support non-NASA science, technology and education initiatives from U.S. government agencies, academic institutions, and the private sector. The Center for the Advancement of Science in Space, Inc. (CASIS(Abbreviation: CASIS™) The nonprofit organization that manages the ISS National Lab, which receives at least 50 percent of the U.S. research allocation on the International Space Station to facilitate research that benefits humanity (NASA manages the other 50% and focuses on research for space exploration purposes).) manages the ISS National Lab, under Cooperative AgreementA cooperative agreement is Federal assistance that establishes a relationship between the U.S. Government and a recipient in which the principal purpose of the relationship is to accomplish a public purpose of support or stimulation. Since 2011, the Center for the Advancement of Science in Space™ (CASIS™) has managed the National Laboratory® through a Cooperative Agreement with NASA. with NASA, facilitating access to its permanent microgravity research environment, a powerful vantage point in low Earth orbit, and the extreme and varied conditions of space. To learn more about the ISS National Lab, visit our website.
# # #