Accelerated Model of Age-Related Muscle Loss in Microgravity Could Lead to New Sarcopenia Treatments
ISS National Lab Enables Valuable Muscle Tissue Chip Studies in Microgravity
KENNEDY SPACE CENTER (FL), October 16, 2024 – According to the World Health Organization, more than 50 million people around the world have sarcopenia. This age-related condition causes loss of muscle mass, strength, and function and increases the risk of falls and bone fractures. Currently, the only treatment for sarcopenia is exercise. Through ISSInternational Space Station National Lab-sponsored research, University of Florida researchers successfully modeled age-related muscle loss using tissue chips in microgravityThe condition of perceived weightlessness created when an object is in free fall, for example when an object is in orbital motion. Microgravity alters many observable phenomena within the physical and life sciences, allowing scientists to study things in ways not possible on Earth. The International Space Station provides access to a persistent microgravity environment.. The model can be used to test new treatments and study sarcopenia in ways not possible on Earth.
The team’s research is detailed in an article in the latest issue of Upward, official magazine of the ISS National Lab. Principal investigator Siobhan Malany, associate professor in the College of Pharmacy at the University of Florida, commented on the value of space-based research in Upward, saying, “Through insight we gather from microgravity, we can understand not just the end result of [sarcopenia], but really look at the progressive change in young and old cells to see what happens as cells age.”
Age-related muscle changes are hard to study because they happen slowly over decades. In microgravity, muscle deterioration is accelerated, allowing researchers to analyze muscle loss on a much quicker timescale. In a series of investigations funded by the National Institutes of Health, the team developed a muscle tissue chipA tissue chip, or organ-on-a-chip or microphysiological system, is a small engineered device containing human cells and growth media to model the structure and function of human tissues and/or organs. Using tissue chips in microgravity, researchers can study the mechanisms behind disease and test new treatments for patients on Earth. The National Institutes of Health (NIH) has a multiyear partnership with the ISS National Laboratory® to fund tissue chip research on the space station. system and tested whether microgravity-induced muscle loss in space mimics age-related muscle loss on Earth. The tissue chips contained muscle bundles engineered using skeletal muscle cells from young, active adults and older, sedentary individuals. Some tissue chips also contained electrodes that delivered electrical stimulation to induce contraction in the muscle bundles.
Results showed that in microgravity, several genes associated with human muscle aging on Earth were upregulated (had increased expression) in the tissue chips containing cells from young active adults. These findings validate that the space-based muscle tissue chip system provides an accurate model of age-related muscle loss. The system provides a valuable new tool for researchers to improve their understanding of sarcopenia and test new potential therapeutics.
Initial findings were published in npj Microgravity, and the team is currently working on several additional publications. Malany recently received an award for these compelling results at the 2024 ISS Research and Development Conference.
See how Malany and her team are using muscle tissue chips in space to help people with sarcopenia on Earth in the Upward feature, “The Beauty of Accelerated Aging.”
Download a high-resolution image for this release: Researchers Prepare Tissue Chips
Media Contact:
Patrick O’Neill
904-806-0035
PONeill@ISSNationalLab.org
# # #
About the International Space Station (ISS) National Laboratory: The International Space Station (ISS) is a one-of-a-kind laboratory that enables research and technology development not possible on Earth. As a public service enterprise, the ISS National Laboratory® allows researchers to leverage this multiuser facility to improve quality of life on Earth, mature space-based business models, advance science literacy in the future workforce, and expand a sustainable and scalable market in low Earth orbit(Abbreviation: LEO) The orbit around the Earth that extends up to an altitude of 2,000 km (1,200 miles) from Earth’s surface. The International Space Station’s orbit is in LEO, at an altitude of approximately 250 miles.. Through this orbiting national laboratory, research resources on the ISS are available to support non-NASA science, technology, and education initiatives from U.S. government agencies, academic institutions, and the private sector. The Center for the Advancement of Science in Space™ (CASIS™(Abbreviation: CASIS™) The nonprofit organization that manages the ISS National Lab, which receives at least 50 percent of the U.S. research allocation on the International Space Station to facilitate research that benefits humanity (NASA manages the other 50% and focuses on research for space exploration purposes).) manages the ISS National Lab, under Cooperative AgreementA cooperative agreement is Federal assistance that establishes a relationship between the U.S. Government and a recipient in which the principal purpose of the relationship is to accomplish a public purpose of support or stimulation. Since 2011, the Center for the Advancement of Science in Space™ (CASIS™) has managed the National Laboratory® through a Cooperative Agreement with NASA. with NASANational Aeronautics and Space Administration, facilitating access to its permanent microgravity research environment, a powerful vantage point in low Earth orbit, and the extreme and varied conditions of space. To learn more about the ISS National Lab, visit our website.
As a 501(c)(3) nonprofit organization, CASIS accepts corporate and individual donations to help advance science in space for the benefit of humanity. For more information, visit our donations page.