Novel Bone Adhesive to Fly on SpaceX CRS-26
KENNEDY SPACE CENTER (FL), November 15, 2022 – More than 200 million people worldwide are affected by osteoporosis, a crippling bone disease that decreases bone density, causing bones to weaken and become increasingly susceptible to fracture. Researchers from RevBio, a biomedical startup, are turning to the microgravityThe condition of perceived weightlessness created when an object is in free fall, for example when an object is in orbital motion. Microgravity alters many observable phenomena within the physical and life sciences, allowing scientists to study things in ways not possible on Earth. The International Space Station provides access to a persistent microgravity environment. environment of the International Space Station (ISSInternational Space Station) National Laboratory to further the development of a novel therapeutic that could help repair bone fractures.
Osteoporotic fractures greatly reduce quality of life, and immobilization following a fracture can lead to further bone loss, which puts patients at risk for breaking another bone. To help patients recover quicker, RevBio developed a potential new therapeutic device, a patented bone adhesive called Tetranite®, that promotes bone growth. In an investigation launching on SpaceX’s 26th Commercial Resupply Services mission(Abbreviation: CRS mission) A CRS mission is a cargo resupply mission contracted by NASA to deliver supplies and research to the International Space Station on commercial spacecraft as part of the CRS contract with three commercial companies. As part of CRS missions, experiments currently return to Earth on SpaceX Dragon spacecraft that splash down in the ocean. (SpaceX CRS-26), the company will examine how well Tetranite® works to regenerate new bone during spaceflight.
“Our adhesive could not only help strengthen bones by repairing fractures but also help regenerate bone that’s very low quality or deficient in volume,” said RevBio founder and CEO Brian Hess.
Microgravity has been shown to cause bone loss similar to that in patients with osteoporosis on Earth but at an accelerated rate. Previous research has also shown that microgravity blocks the development of stem cells into new cells, which the RevBio team proposes could be why astronauts lose bone mass during spaceflight. This makes the ISS an ideal environment to study osteoporosis and test therapeutics. Results from the team’s experiment could not only improve patient care here on Earth but also provide more effective health care options for astronauts on long-duration missions.
This investigation builds on prior ISS National Lab-sponsored research from RevBio (previously LaunchPad Medical). The company was awarded a grant for its initial project through the Technology in Space PrizeA prize that provides grant funding for business startups participating in the MassChallenge startup accelerator program to conduct innovative research and technology development utilizing the ISS National Lab. The prize is funded by the Center for the Advancement of Science in Space, which manages the ISS National Lab, and Boeing., funded by Boeing and the Center for the Advancement of Science in Space, Inc. (CASIS(Abbreviation: CASIS™) The nonprofit organization that manages the ISS National Lab, which receives at least 50 percent of the U.S. research allocation on the International Space Station to facilitate research that benefits humanity (NASA manages the other 50% and focuses on research for space exploration purposes).), manager of the ISS National Lab, in partnership with the MassChallenge startup accelerator program.
The investigation launching on SpaceX CRS-26, supported by ISS National Lab Implementation Partner(Abbreviation: IP) Commercial companies that work with the ISS National Lab to provide services related to payload development, including the translation of ground-based science to a space-based platform. Leidos Innovations Corporation, will work in two ways. First, it will investigate how skeletal stem cells (bone-specific postnatal stem cells) are affected by microgravity. And second, it will evaluate the Tetranite® bone adhesive to see how it promotes bone regeneration by stimulating the skeletal stem cells.
“With this study, we will really be able to map what happens with skeletal stem cells in space compared to what happens on Earth,” said Giuseppe Intini, an associate professor at the University of Pittsburgh School of Dental Medicine and Principal Investigator of this project, who is working with the RevBio team to advance the development of the Tetranite®. “That’s important because previous research indicates that microgravity may lock stem cells into an undifferentiated status, which could be what’s causing the decline of bone mass in astronauts.”
Intini says results from this experiment could help researchers better understand how to harness skeletal stem cells for therapeutic uses, which could ultimately lead to better treatments for bone fractures and methods to help mitigate the development of bone defects.
To evaluate how well Tetranite® works, the team is sending 40 mice to the orbiting laboratory, some of them with a bone defect in their calvarial bone (the top part of the skull). The mice with defects are divided into three groups: those left untreated, those whose defect was filled with RevBio’s Tetranite® bone adhesive compound, and those whose defect was treated with INFUSE®—an inductive bone graft product from another company that is currently on the market.
“Microgravity is the ultimate test bed,” said Hess. “If we can show that our material could stimulate bone, in particular spurring bone regenerative cells to be more active and do their job more efficiently despite being in a compromised situation, that would be the ultimate demonstration.”
SpaceX CRS-26 is targeted for launch from Kennedy Space Center no earlier than November 21 at 4:19 p.m. EST. This mission will include more than 20 ISS National Lab-sponsored payloads. To learn more about all ISS National Lab-sponsored research on SpaceX CRS-26, please visit our launch page.
Media Contact:
Patrick O’Neill
904-806-0035
PONeill@ISSNationalLab.org
# # #
About the International Space Station (ISS) National Laboratory: The International Space Station (ISS) is a one-of-a-kind laboratory that enables research and technology development not possible on Earth. As a public service enterprise, the ISS National Lab allows researchers to leverage this multiuser facility to improve life on Earth, mature space-based business models, advance science literacy in the future workforce, and expand a sustainable and scalable market in low Earth orbit(Abbreviation: LEO) The orbit around the Earth that extends up to an altitude of 2,000 km (1,200 miles) from Earth’s surface. The International Space Station’s orbit is in LEO, at an altitude of approximately 250 miles.. Through this orbiting national laboratory, research resources on the ISS are available to support non-NASA science, technology and education initiatives from U.S. government agencies, academic institutions, and the private sector. The Center for the Advancement of Science in Space (CASIS) manages the ISS National Lab, under Cooperative AgreementA cooperative agreement is Federal assistance that establishes a relationship between the U.S. Government and a recipient in which the principal purpose of the relationship is to accomplish a public purpose of support or stimulation. Since 2011, the Center for the Advancement of Science in Space™ (CASIS™) has managed the National Laboratory® through a Cooperative Agreement with NASA. with NASANational Aeronautics and Space Administration, facilitating access to its permanent microgravity research environment, a powerful vantage point in low Earth orbit, and the extreme and varied conditions of space. To learn more about the ISS National Lab, visit stg-issnationallab-issnldevsite.kinsta.cloud.
# # #