Cardiac Tissue Chips to Fly to the ISS to Refine Drug Screening

BioCell developed by BioServ Space Technologies that contain 162 beating cardiac spheroids derived from induced pluripotent stem cells (iPSCs).

BioCell developed by BioServ Space Technologies that contain 162 beating cardiac spheroids derived from induced pluripotent stem cells (iPSCs).

Media Credit: Drs. Joseph Wu, Dilip Thomas and Xu Cao, Stanford Cardiovascular Institute.

KENNEDY SPACE CENTER (FL), March 10, 2023 – More than 600,000 people die each year from cardiovascular disease in the United States. Many more experience weakened heart muscles, which often results in heart failure, a state in which the heart is unable to pump blood throughout the body. To improve patient care and quality of life for people with heart disease, a team of researchers from Stanford University led by Joseph Wu is turning to the International Space Station (ISS) National Laboratory. The team will test whether engineered heart muscle tissue grown in microgravity can be used as a model for heart failure to screen potential new drugs.

“We are interested in improving patients’ lives and want to better understand what causes heart diseases and how we can prevent them using either new therapeutics or old therapeutics that are reformulated or repurposed,” said Dilip Thomas, a research instructor at Stanford.

A preflight image of beating cardiac spheroid composed of iPSC derived cardiomyocytes (CMs), endothelial cells (ECs), and cardiac fibroblasts (CFs). 

A preflight image of beating cardiac spheroid composed of iPSC-derived cardiomyocytes (CMs), endothelial cells (ECs), and cardiac fibroblasts (CFs). 

Media Credit: Drs. Joseph Wu, Dilip Thomas and Xu Cao, Stanford Cardiovascular Institute.

Space-based research provides a unique opportunity to study heart conditions because prolonged exposure to microgravity can weaken heart muscles at a much quicker rate than aging or heart disease do on Earth. Research has found that microgravity weakens heart muscle cells and engineered heart tissue in the same way.

“We know that prolonged stress environments like microgravity can cause weakening of cardiac muscle cells, producing the symptoms that we see in patients that suffer from heart failure on Earth,” Thomas said. “We can use the ISS to model a lot of the diseases that we see in patients on Earth but on an accelerated timeline.”

The investigation, launching on SpaceX’s 27th Commercial Resupply Services (CRS) mission, is funded by the National Institutes of Health’s National Center for Advancing Translational Sciences (NCATS) through the Tissue Chips in Space initiative in collaboration with the ISS National Lab. Tissue chips are small devices engineered to model the structure and function of human tissues and organ systems. The Stanford team will examine microgravity’s effects on heart function utilizing cardiac tissue chips containing engineered heart tissues derived from human stem cells.

The team will pretreat the engineered heart tissues with FDA-approved drugs and send them to the ISS to evaluate whether the therapeutics help reduce the negative effects of microgravity on the tissues. By testing clinically approved drugs, the team can validate that the tissue chips are effective at modeling heart disease and identifying potential treatments. The team will send two sets of pre-treated samples: one that will be chemically fixed at a defined time point and one that will be returned live so the team can analyze how the stresses of launch and landing affect the tissues.

The SpaceX CRS-27 mission is targeted for launch from Kennedy Space Center no earlier than March 14 at 8:30 p.m. EST. This mission will include more than 15 ISS National Lab-sponsored payloads. To learn more about all ISS National Lab-sponsored research on SpaceX CRS-27, please visit our launch page.

Download a high-resolution photo for this release: SpaceX CRS-27: Stanford University Cardiac Research

View a video highlighting research initiatives mentioned in this release: SpaceX CRS-27 Research: Cardinal Heart 2.0

Media Contact:       
Patrick O’Neill
904-806-0035
PONeill@ISSNationalLab.org

 

# # #

About the International Space Station (ISS) National Laboratory:  The International Space Station (ISS) is a one-of-a-kind laboratory that enables research and technology development not possible on Earth. As a public service enterprise, the ISS National Lab allows researchers to leverage this multiuser facility to improve life on Earth, mature space-based business models, advance science literacy in the future workforce, and expand a sustainable and scalable market in low Earth orbit. Through this orbiting national laboratory, research resources on the ISS are available to support non-NASA science, technology and education initiatives from U.S. government agencies, academic institutions, and the private sector. The Center for the Advancement of Science in Space, Inc. (CASIS) manages the ISS National Lab, under Cooperative Agreement with NASA, facilitating access to its permanent microgravity research environment, a powerful vantage point in low Earth orbit, and the extreme and varied conditions of space. To learn more about the ISS National Lab, visit issnationallab.org.

# # #