Stanford University Sends Semiconductor Investigation to the International Space Station
KENNEDY SPACE CENTER (FL), June 8, 2023 – In recent years, the world has focused on shifting away from fossil fuels, with the goal of using renewable energy sources as the future means of powering the globe. Currently, 22% of global energy production comes from various renewable energy sources, like photovoltaic devices, which are a fast-growing contributor to solar energy solutions. To create more energy-efficient photovoltaic devices, researchers are turning to the International Space Station (ISSInternational Space Station) National Laboratory, and the results could improve how we power the globe.
Researchers from Stanford University sent an investigation to the space station on SpaceX’s 28th Commercial Resupply Services (CRS) mission. The project aims to leverage microgravityThe condition of perceived weightlessness created when an object is in free fall, for example when an object is in orbital motion. Microgravity alters many observable phenomena within the physical and life sciences, allowing scientists to study things in ways not possible on Earth. The International Space Station provides access to a persistent microgravity environment. to improve the synthesis of materials for photovoltaic devices designed to convert sunlight into electricity for solar energy applications. The team will anneal copper indium sulfide (CuInS2) semiconductor crystals in space in an effort to reduce defects that commonly occur in crystal production on Earth. Higher-quality CuInS2 crystals would enable the development of photovoltaic devices that are more efficient.
“By doing the annealing process in microgravity, we hope to create more uniform crystals that have an even electrical conductivity,” said Jessica Frick, a research engineer at Stanford University.
According to Frick, this uniformity is key to making more efficient solar cell products. “If there are defects in the crystals or if there is an inhomogeneous spread of defects, it’s going to affect electron transfer, which affects how well solar energy is transferred to electrical energy.”
In solar cells, light from the sun is collected and transformed into electrical energy that can power an array of devices. For that to happen, electrons travel through a circuit with the help of semiconductors. Frick says that if there are impurities or an uneven concentration of impurities in semiconductor crystals, you can get areas of electrical resistance and areas of fast connection.
Producing semiconductor crystals in space could help solve this problem because the gravity-driven forces that contribute to crystal impurities on Earth are removed. For their investigation, Frick and her team are sending CuInS2 crystals to the space station, where they will be heated and cooled in a process called annealing. The crystals will be heated to approximately 400 degrees Celsius and then allowed to cool down before being sent back to Earth for analysis. The team hopes the space-based conditions will enable them to produce higher-quality crystals than what can be manufactured on Earth.
SpaceX CRS-28 launched to the International Space Station on June 5 at 11:47 a.m. EDT. This mission includes multiple ISS National Lab-sponsored payloads. To learn more about all ISS National Lab-sponsored research on this mission, please visit our launch page.
Download a high resolution image for this release: A Scanning Electron Microscope View of the Crystallites
Media Contact:
Patrick O’Neill
904-806-0035
PONeill@ISSNationalLab.org
# # #
About the International Space Station (ISS) National Laboratory: The International Space Station (ISS) is a one-of-a-kind laboratory that enables research and technology development not possible on Earth. As a public service enterprise, the ISS National Lab allows researchers to leverage this multiuser facility to improve life on Earth, mature space-based business models, advance science literacy in the future workforce, and expand a sustainable and scalable market in low Earth orbit(Abbreviation: LEO) The orbit around the Earth that extends up to an altitude of 2,000 km (1,200 miles) from Earth’s surface. The International Space Station’s orbit is in LEO, at an altitude of approximately 250 miles.. Through this orbiting national laboratory, research resources on the space station are available to support non-NASA science, technology and education initiatives from U.S. government agencies, academic institutions, and the private sector. The Center for the Advancement of Science in Space, Inc. (CASIS(Abbreviation: CASIS™) The nonprofit organization that manages the ISS National Lab, which receives at least 50 percent of the U.S. research allocation on the International Space Station to facilitate research that benefits humanity (NASA manages the other 50% and focuses on research for space exploration purposes).) manages the ISS National Lab, under Cooperative AgreementA cooperative agreement is Federal assistance that establishes a relationship between the U.S. Government and a recipient in which the principal purpose of the relationship is to accomplish a public purpose of support or stimulation. Since 2011, the Center for the Advancement of Science in Space™ (CASIS™) has managed the National Laboratory® through a Cooperative Agreement with NASA. with NASANational Aeronautics and Space Administration, facilitating access to its permanent microgravity research environment, a powerful vantage point in low Earth orbit, and the extreme and varied conditions of space. To learn more about the ISS National Lab, visit issnationallab.org.
# # #