Life Sciences on the Space Station
The International Space Station provides a unique platform for studying the effects of spaceflight on living organisms. The microgravityThe condition of perceived weightlessness created when an object is in free fall, for example when an object is in orbital motion. Microgravity alters many observable phenomena within the physical and life sciences, allowing scientists to study things in ways not possible on Earth. The International Space Station provides access to a persistent microgravity environment. environment of the ISSInternational Space Station allows researchers to perform a wide variety of life sciences research not possible on the ground that greatly benefits people on Earth. Such research has many important applications, including elucidating the mechanisms behind disease, improving drug design and development, advancing regenerative medicine, and better understanding plant behavior to improve crop growth.
You can find out the latest results from life sciences research on the space station at the 2018 ISS Research and Development Conference (ISSRDC)—Monday, July 23 through Thursday, July 26 in San Francisco. ISSRDC(Abbreviation: ISSRDC) The only conference dedicated exclusively to showcasing how the International Space Station is advancing science and technology and enabling a robust and sustainable market in LEO. This annual conference brings together leaders from the commercial sector, U.S. government agencies, and academic communities to foster innovation and discovery onboard the space station. ISSRDC is hosted by the Center for the Advancement of Science in Space, manager of the ISS National Lab; NASA; and the American Astronautical Society. is the place to go to hear thought leaders and subject matter experts discuss the latest R&D taking place in low Earth orbit(Abbreviation: LEO) The orbit around the Earth that extends up to an altitude of 2,000 km (1,200 miles) from Earth’s surface. The International Space Station’s orbit is in LEO, at an altitude of approximately 250 miles.!
Technical sessions at the conference will highlight the most recent results in space-based life sciences research. A technical session on Tuesday will be centered on biology and medicine, a session on Wednesday will focus more specifically on cell biology, and Thursday will include sessions on plant science, tissue engineering, and rodent research. More details on the technical sessions are listed on the ISSRDC website.
Read below to see how the ISS can be used to advance many areas of research within the life sciences.
Gene Expression
Microgravity induces changes in gene expression in living organisms—from humans to animals, plants, and even microbes! By studying gene expression changes in space, researchers may uncover new information about how certain genes influence health. Such research provides important insight into the fundamental mechanisms involved in human health and disease.
Read more about ISS National Lab research on gene expression:
Body Systems
Spaceflight causes several changes in body systems, including changes that affect bone mass, skeletal muscle mass and strength, immune system function, cardiovascular function, and metabolism. The responses of model organisms, such as rodents, to spaceflight mimic outcomes associated with aging and chronic conditions on Earth. Space-based research allows researchers to analyze rapid changes in body systems as well as test therapeutics in accelerated models of aging and disease, which is important for both astronaut health and the health of people back on Earth.
Read more about ISS National Lab research on body systems:
Cell Biology
Microgravity enables cells to form into complex 3D structures that are more similar to tissues in the human body. This 3D cell growth provides researchers with better models to study cell behavior, test new drugs, and make advances in the field of regenerative medicine.
Tissue chipA tissue chip, or organ-on-a-chip or microphysiological system, is a small engineered device containing human cells and growth media to model the structure and function of human tissues and/or organs. Using tissue chips in microgravity, researchers can study the mechanisms behind disease and test new treatments for patients on Earth. The National Institutes of Health (NIH) has a multiyear partnership with the ISS National Laboratory® to fund tissue chip research on the space station. systems (also called microphysiological systems) use cells grown on an artificial scaffold to model the detailed physical structure of human tissue. Space-based tissue chip research could provide important insight into disease progression and serve as a valuable platform for drug testing.
Additionally, simulated microgravity has been shown to enhance some stem cell properties, including increased proliferation (ability to multiply quickly) and viability (ability to survive), aggregation into large 3D clusters that maintain pluripotency (ability to give rise to all different cell types), and enhanced differentiation (ability to change from general-purpose cells into specialized cells). Stem cells have wide-ranging applications from personalized medicine to therapies for cancer, neurogenitive diseases, and wound healing.
Read more about ISS National Lab research on cell biology:
Plant Behavior
Plant research in microgravity allows scientists to examine fundamental plant development processes free from the masking effects of gravity. Spaceflight research can provide valuable insight into plant structure and behavior that enables a better understanding of plant biology on ground. Researchers can also examine how plants react to the stressful microgravity environment, which could shed light on ways to improve plant growth in harsh conditions on Earth.
Knowledge gained from spaceflight research could lead to improved crop production, development of new plant varieties, and increased biofuel production. Additionally, space-based plant research can yield important information about crop production on future long-duration spaceflight missions.
Read more about ISS National Lab research on plant behavior:
Organic Molecule Crystallization
The space station provides a valuable platform for molecular crystal growth. Crystals grown in microgravity are often larger and more well-ordered than Earth-grown crystals. In analyzing organic molecules, high-quality crystals can result in improved datasets for molecular structure determination.
Larger crystals also enable use of neutron diffraction for crystal analysis (rather than more traditional diffraction analyses that use x-rays). Neutron diffraction provides greater detail on protein structures by allowing researchers to determine the position of hydrogen atoms within the structures. Organic molecule crystallization in microgravity can lead to improved drug development, formulation, manufacturing, and storage. It can also help agricultural researchers develop solutions that better protect crops and enhance growth.
Read more about ISS National Lab research on organic molecule crystallization: